Blog
Results for:
Search options
Results for:
Search options
Pepper QiSDK
NAO (NAOqi 2.1)
NAO⁶
Pepper (NAOqi 2.5)
Blog
Results for:
Product
Document type
Tags
Skills
Pepper QiSDK
 (11)
NAO⁶
 (6)
Pepper (NAOqi 2.5)
 (6)
Blog
 (17)
Documentation
 (8)
Lesson
 (3)
Softbank Robotics Labs
 (19)
Github
 (17)
Tips and tricks
 (11)
Connectivity
 (8)
QiSDK
 (8)
Release Note
 (8)
Research & Innovation
 (7)
Animation
 (6)
API Challenge
 (5)
Event
 (5)
Motion
 (5)
Navigation
 (5)
OS Release Note
 (5)
Tablet
 (5)
Conversation
 (4)
QiChat
 (4)
Human-Robot Interaction (HRI)
 (3)
Product Lifecycle Management
 (3)
project
 (3)
Ubuntu
 (3)
17
Items found
Sort by
Relevance
Date
Blog
CARESSES: smart and friendly robots for the elderly
An international partnership where SBRE puts forward Pepper to answer user specific needs - How can technology support the worldwide issue of the ageing populations and the complexity of human connections? SBRE committed into the CARESSES program to integrate a system that plans the robot's actions according to a relevant cultural knowledge base.
2019/05/17
Pepper (NAOqi 2.5)
Research & Innovation
Healthcare
Elderly
Blog
qiBullet
a Bullet-based simulator for the robots - qiBullet is a simulation tool enabling users to easily experiment with Pepper and NAO robots in virtual environments and gather accurate data.
2020/02/27
Pepper (NAOqi 2.5)
NAO⁶
Github
Research & Innovation
Blog
CROWDBOT: Safe Navigation of Robots in Dense Crowds.
CROWDBOT, an European Collaborative project enables robots to freely navigate and assist humans in crowded areas. - Today’s moving robots stop when a human, or any obstacle is too close, to avoid impact. This prevents robots from entering packed areas and effectively performing in a high dynamic environment. CROWDBOT aims to fill in the gap in knowledge on close interactions between robots and humans in motion.
2020/05/26
Pepper QiSDK
Pepper (NAOqi 2.5)
NAO⁶
Research & Innovation
Navigation
Blog
Pepper plays ball-in-the-cup
We made Pepper the robot play games of skill with AI (Artificial Intelligence) at SBRE - SBRE AI Lab (Artificial Intelligence Laboratory) taught Pepper how to successfully throw a ball in a cup and a dart at the dartboard (they are exactly the same dynamic problem) using dexterity and a bit of dynamical systems theory. Here is the story of what it takes to match elementary games and robotics.
2019/05/17
Research & Innovation
Machine Learning
Blog
Let’s make Pepper and NAO speak a second language
How to install a language package and get speech recognition in new languages - As international talking robots, Pepper and NAO can access many languages for speech recognition, and its management is quite easy. This quick how-to explains how to set up new languages installing a language pack in a few simple steps.
2020/09/30
Pepper QiSDK
Pepper (NAOqi 2.5)
NAO⁶
QiChat
Dialogue
Conversation
Tips and tricks
Blog
Controlling Robots with Human Poses
A Research project about Pepper and NAO immersive teleoperation - A new immersive teleoperation solution based on Extreme Learning Machine (ELM), a Machine Learning technique, is introduced for Pepper and NAO robots. Immersive teleoperation is defined as a robot remote control that renders the operator the sensation of being inside the teleoperated environment and providing a feeling of being the robot itself. The solution is independent of other mapping approaches (e.g. inverse kinematics) and the user’s whole body is used for the robot control. Even with scarce training data, the solution returns satisfactory results in both precision and computational speed.
2020/12/31
Pepper QiSDK
Pepper (NAOqi 2.5)
NAO⁶
Research & Innovation
Blog
NAO learns body control from scratch
A thesis on model learning - How can a real complex robot, such as NAO, learn new skills from scratch, such as rolling around or sitting up, simply by interacting with its environment? Without access to some simulation such learning would require at a minimum weeks of consistent training using previous state-of-the-art methods. The training would in addition require a significant amount of assistance. Someone would need to reset the robot between different trials, as well as provide repairs to ensure consistent functionality. One of the PhD projects in the AI Lab of SBRE investigated this question, and we are now able to present an original framework that allows this type of control very quickly.
2020/05/26
Research & Innovation
Pagination
Current page
1
Page
2
Page
3
Next page
>
Breadcrumb
Home